

Vol. 8, No. 4
December
1999

Editor
Shannon K.
Verstynen

Editorial
Assistant
Emily N. Todd

Subscription

Inside this Issue
ICASErs Share 1999 Bell Prize for High
Performance Computer Simulation

ICASE Welcomes New Staff and Visiting Scientists

Using JiniTM Technology for Distributed Resource
Manager in Arcade
A. Al-Theneyan, P. Mehrotra, and M. Zubair

 Arcade is a web-based framework for designing
and executing applications across a distributed set of
heterogeneous resources. Resource management is
one of the important issues in building such systems.
Recently, Sun introduced the Jini connection
technology for building plug-and-play networks of
resources. In this article we describe our experiences
with using Jini technology to build a Resource
Manager module for Arcade.

Type Theory and Its Applications in Computer
Science
César Muñoz

 Type theory is a mathematical technique widely
used in computer science. In the formal methods
community, type theory is at the basis of higher-order
logic tools and expressive languages for formal
specification. From a practical point of view, type
theory has been used to improve the quality of
software systems by allowing the detection of errors
before they became run-time problems. This article
gives a general overview of type theory and its role in
the foundation of programming and specification
languages.

Nobel Laureate Smalley Lectures at ICASE
November 19th

ICASE Colloquia

ICASE Reports

Employment Opportunities at ICASE

Publication Information

Navigation Help

Past Issues

Subscription Information
 You can receive e-mail notification of future

editions of the ICASE Research Quarterly by
going to the ICASE Mailing Lists Web Page and
selecting the entry for the Quarterly.

 © 1999 ICASE, all rights reserved.

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

ICASErs Share 1999 Bell Prize
for High Performance Computer
Simulation

Gordon Bell (left) and
David Keyes (right)

D. Bailey (left) awarding the
Bell Prize to D. Kaushik
(right).

A team consisting of an ODU graduate student and
faculty member - both regular research participants at
ICASE - plus their collaborators at the NASA
Langley Research Center and the U.S. Department of
Energy shared in the Gordon Bell Prize awards on
November 18, 1999 at Supercomputing’99 in
Portland, OR. Their entry, entitled "Achieving High
Sustained Performance in an Unstructured Mesh CFD
Application," qualified for a share of the "Special"
category in the annual international Bell Prize
competition, which recognizes implementations of
practical computational simulations that achieve new
levels of performance.

 The ODU/ICASE-led team of Dinesh Kaushik (a
doctoral candidate in Computer Science and an
ICASE graduate student), David Keyes (chairman of
the Mathematics & Statistics Department, who holds
an adjunct appointment in Computer Science and is
an Associate Research Fellow at ICASE), Kyle
Anderson (a career computational aerodynamicist at
NASA Langley), and William Gropp and Barry Smith
(computer scientists and developers of parallel
software at Argonne National Laboratory), showed
that a class of simulations previously believed to be
extremely difficult on which to get good performance
on a parallel computer, could, in fact, obtain within a
factor of four or five of the theoretical peak

Navigation Help

Past Issues

p
performance of the world’s fastest computers. Their
simulation was not the fastest overall submitted in the
1999 competition, but a three-judge panel created a
special category of the award this year to recognize
the significance of their achievement.

 The ODU/ICASE/NASA/DOE team simulated the
flow of air over an airplane wing, using 3,072 Intel
Pentium Pro dual-processor nodes at a computational
rate of 0.227 Teraflop/s - or 227 billion floating point
operations per second. The computer they used for
their highest-performing run, "ASCI Red," is located
at Sandia National Laboratory in New Mexico. They
ran the same cases on other high-end computers,
including "ASCI Blue Pacific" at Lawrence
Livermore National Laboratory in California, an
SGI-Cray T3E at the vendor’s headquarters in
Minnesota, an SGI-Cray Origin2000, and an IBM
SP2 at Argonne National Laboratory in Illinois,
ODU’s own HPC10000 from Sun Microsystems, and
a variety of other machines.

 In addition to building a code that implements a
highly efficient algorithm portably over a wide range
of high-end machines, the researchers demonstrated
that such performance could be obtained from a
general purpose "library" of parallel code modules
written in standard high-level computer language,
such as Fortran, C, or C++. In the past, writing
high-performance code has often required special
attention to hardware features of the computer and
has been specific to one particular scientific
application, so that the code is not reusable. Thanks to
a multi-year investment by the Department of Energy
in parallel scientific software at Argonne, the
researchers were able to implement their algorithmic
ideas in software that can be reused on many related
applications, such as combustion, radiation transport,
atmospheric and ocean modeling, petroleum reservoir
modeling, or semiconductor device simulation.

 In presenting the work to the audience at
Supercomputing’99, Keyes claimed that many
scientific codes written for earlier generations of
computers can be adapted, with a reasonably small
investment of human expertise, to run on parallel
computers following the paradigm employed on their
transformed NASA code. The memory of such
computers is usually distributed over hundreds or
thousands of processors, and a processor running one

copy of a legacy program cannot transparently access
the memory of another, which may contain data that it
requires. Using the library developed by the Argonne
collaborators, this important task becomes
transparent.

 To be effective for supercomputing an algorithm
must have three properties: it must run fast on a single
processor, it must "scale" efficiently to many
processors (for instance, it should run nearly 1000
times faster on 1000 processors than it does on one),
and it must converge nearly as quickly on a large
number of processors as on one. (Running fast and
converging quickly are different concepts.
Parallelization may change an algorithm so that even
though it runs fast in the sense of many operations per
second, it also requires many more operations to
complete, defeating the former gain.) If any one of
these three criteria are left out, it is known how to
excel at the other two. The ODU/ICASE/NASA/DOE
team worked methodically and made practical
contributions on each of the three criteria in an effort
that has been ongoing in a general sense with ICASE
support for several years.

 A particular difficulty faced by the researchers was
that the NASA code, originally written by Anderson,
makes use of unstructured grids. Whereas fields
stored on structured grids have neighbors in regular
positions, which can be directly addressed in standard
computer languages. An address table must be
consulted on unstructured grids in order to find the
neighbors of a given field unknown, an operation that
needs to be performed thousands of times for each
unknown in the course of solution. The resulting
address translations can "choke" the flow of data
between memories and processors. Nevertheless, the
flexibility of unstructured grids is desired in many
contemporary applications. The researchers could not
do away with the address translation stage, but they
clustered and ordered the data defined on the grid in
such a way that a single translation step could take the
place of many translations in the previous code.

 The specific collaboration that led to this year’s
award was begun during an interagency workshop on
unstructured grid techniques co-organized by Smith
and Keyes at Argonne in September 1996, which was
supported in part by NASA Langley’s HPCC program
and attended by all five of the collaborators. Kaushik

immediately thereafter made the project the subject of
his doctoral dissertation. He expects to complete work
during the upcoming calendar year and assume a
post-doctoral position at Argonne, where he has been
physically resident during all of 1999.

 The "ASCI" machines, on which all but one of this
year’s Bell Prize winning entries were run, derive
their names from the Department of Energy’s
Accelerated Strategic Computing Initiative, a research
program whose goal is to show that the testing of
nuclear weapons may be replaced by computer
simulations. The scientific support provided by this
program is an important component of the
Comprehensive Nuclear Test Ban Treaty, which the
Senate rejected in its present form earlier this fall. It
has not yet been convincingly demonstrated to many
scientists and policy makers that computational
simulations alone can provide enough information to
maintain and monitor the nuclear stockpile in the
absence of tests. The reliability of such simulations is
related to the speed at which they can be carried out.
As demonstrated at Supercomputing’99, strong steps
in this direction were made during the past year. In
contrast, there were no directly ASCI-affiliated Bell
Prize winners in 1998, even though three ASCI
computers, costing taxpayers upwards of $100
million, were already then operating in production
mode at DOE laboratories.

 Old Dominion University is one of 18 universities
nationwide participating with the DOE at the level of
a one-million dollar contract or more in the ASCI
research endeavor. Besides Keyes, Professors Alex
Pothen and Linda Stals of Computer Science are
intensely involved in the program. Dr. Dimitri
Mavriplis, an ICASE Research Fellow, is also an
integral member of the project. Mavriplis’s
aerodynamic simulation codes have run with high
efficiency on "ASCI Red" and "ASCI Blue Pacific"
using grids even larger than the grids of this year’s
prize-winners.

 The Gordon Bell Prize was instituted in 1988 by
Dr. Gordon H. Bell, one of the designers of the DEC
Vax computer systems, and a long-time personal
patron of the field of high performance computing.
Technical Paper entries to the Bell Prize competition
are judged by a panel of respected figures in high
performance computing. The principal prize is for

total sustained performance, with additional prizes in
price-performance, speed-up, and compiler speed-up
being awarded from year to year as appropriate. The
four prize-winning teams of 1999 split a total of
$5000 in prize money.

 The team with which the ODU/ICASE-led team
shared this year’s "Special" category is a separate
Argonne National Laboratory effort, headed by
former ICASE consultant Paul F. Fischer. It is also
related to fluid flow. The team that won the total
sustained performance award is composed of 13
members from Lawrence Livermore National
Laboratory, the University of Minnesota, and IBM.
The team that won the price-performance award is
from Japan.

 Old Dominion University and ICASE were
honored in another way in the Supercomputing’99
awards process. Graduate student David Hysom of
Computer Science, a doctoral candidate being
supervised by Alex Pothen, was one of four finalists
(internationally) in two prize categories, together with
Pothen: Best Paper and Best Student Paper. Hysom is
a graduate student intern at ICASE and Pothen has
been a regular consultant to ICASE since 1994.
Ultimately, these Best Paper awards were won by
others, but Hysom’s talk on the "Efficient Parallel
Computation of ILU Preconditioners" was
well-attended and led to many audience interactions.
The Hysom-Pothen project is closely related to the
Kaushik-Keyes-NASA-DOE project. The algorithms
Hysom is developing as part of his dissertation are
likely to be incorporated into such simulations in the
future, replacing one of the weakest components of
the current procedure and further improving the
efficiency of parallel computing for this class of
simulations.

 Though they were not co-authors of the winning
particular submission, two other developers of the
DOE software library at the heart of the winning also
have ODU/ICASE connections. (The software,
known as the Portable Extensible Toolkit for
Scientific Computing, or "PETSc," was the subject of
an ICASE short course in December 1996 and a
tutorial co-sponsored by ICASE at Parallel CFD’99
last May.) Lois Curfman McInnes, who did a
three-semester post-doc as an ODU employee under
Keyes and Pothen on an NSF "Grand Challenge"

grant, is a third member of the Argonne team that
produced the PETSc. McInnes earned her Ph.D. from
the University of Virginia. Satish Balay, presently a
staff computer scientist at Argonne and the fourth
member of the team, graduated with an M.S. in CS
from ODU in 1995, as one of Keyes’s first ODU
research students. The PETSc project web page is
http://www.mcs.anl.gov/petsc.

 Keyes and Anderson met when Keyes used to
consult at NASA Langley through the Institute for
Computer Applications in Science and Engineering
during summers of the period 1986-1993, before
Keyes joined ODU. Anderson’s code is named
"FUN3D" for "Fully Unstructured -- Three
Dimensional" (pronounced Fun-3-D). Its web page is
http://fmad-www.larc.nasa.gov/~wanderso/Fun.

 © 1999 ICASE, all rights reserved.

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

ICASE Welcomes New Staff and
Visiting Scientists
ICASE has recently welcomed several new staff
members and visitors, including Staff Scientist Luc
Huyse and Visiting Scientist Yeon-Gon Mo, whose
profiles are provided below:

Dr. Luc Huyse joined
ICASE as a Staff Scientist
in Applied and Numerical
Mathematics in October
1999 and is working in the
area of robust optimization
under uncertainties.

 Luc graduated from the Katholieke Universiteit
Leuven in Belgium as a Civil Engineer in 1991 with
an honors thesis in the field of traffic flow modeling.
From 1991 till 1994 he worked in two areas: finite
element modeling of fiber-reinforced concrete and
the assessment of structural damage in concrete
structures as well as in historic masonry buildings.

 Because an appropriate statistical model of the
uncertainties is paramount in all these applications,
he started graduate school at the University of
Calgary in Canada to study risk and reliability
analysis where he obtained a M.Sc. in 1995 and a
Ph.D. in 1999, both in Civil Engineering.

 His work is concentrated in the areas of robust
estimation of extreme values, reliability-based
design, random field modeling and the Stochastic
Finite Element Method.

Dr. Yeon-Gon Mo joined
ICASE as a Visiting
Scientist in October 1999.

 Yeon-Gon received his
Ph.D. in Electrical
Engineering at the

University of Nebraska in 1999. While at the
University of Nebraska, he worked as a Research

Navigation Help

Past Issues

Assistant. His dissertation project concentrated on
the material processing, synthesis, and
characterization of photochromic and
thermochromic materials including ceramics,
polymers, and organic-inorganic composites using
sol-gel processing, CVD, and magnetron reactive
sputtering. He was involved in the NASA project on
"Thermal Control Thin Film Coatings."

 His current research work focuses on networked
rectenna array for smart material actuators and
thin-film microcircuit embodiment of PAD and
VUC circuits.

 © 1999 ICASE, all rights reserved.

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource
Manager in
Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

Using JiniTM Technology for
Distributed Resource Manager in
Arcade*

A. Al-Theneyan
Old Dominion University and ICASE
P. Mehrotra
ICASE
M. Zubair
Old Dominion University and ICASE

Arcade

Arcade is a web-based integrated framework being
built to provide support for a team of discipline
experts to collaboratively design, execute, and
monitor multidisciplinary applications on a
distributed heterogeneous network of workstations
and parallel machines [1].This framework is suitable
for applications, which in general consist of multiple
heterogeneous modules interacting with each other to
solve the overall design problem, such as the
multidisciplinary design optimization of an aircraft.

Figure 1: Architecture of the Arcade System
(Click on figure to view enlarged image.)

Navigation Help

Past Issues

 As shown in Figure 1, Arcade is based on a
three-tier architecture. The front-end is a web-based,
lightweight client which provides the user interface to
the whole system. It consists of applets which allow
users to design an application, monitor and allocate
resources, and execute, monitor and steer the
application in a collaborative manner. The back-end
consists of the distributed resources that are used to
actually execute the user modules and application
codes. A lightweight controller executes on each
resource providing a gateway to the resource.

 Most of the logic of the system is contained in the
Java-based middle tier. Among other modules, the
middle-tier consists of the user interface server which
provides logic to process the user input, the execution
controller which manages the overall execution of the
application, the data manager which controls the data,
and the application monitoring and steering controller
which services the monitoring and steering request
from the clients.

 One of the major components of the middle tier is
the Resource Manager (RM). The RM keeps track of
the distributed resources which comprise the
execution environment and provide information
about these resources to the client/user upon request.
In a distributed environment, such as the one
envisioned for Arcade, the RM has to be flexible,
extensible, and dynamic. The resources are varied in
nature ranging from compute engines, to data servers,
to specialized instruments. The RM has to be flexible
enough to not only handle such heterogeneity but
also provide information about these systems. The
environment is generally dynamic in which systems
randomly join and leave. The RM should be able to
handle such dynamic behavior without human
intervention. Also each resource generally has some
static characteristics, e.g., the speed of the CPU on a
compute engine, along with some dynamic attributes,
e.g., the current load on a machine. The RM should
keep track of not only the static information but also
the dynamic information. Another issue is that
Arcade is targeted to work in a multi-domain
environment, accessing and utilizing physically
distributed resources spread across separately
controlled and managed domains. We have been
investigating the use of the recently introduced Jini
connection technology to build the Arcade Resource

Manager and in this article we describe our
experiences and the enhancements we have had to
make to use this technology in Arcade.

Jini in a Nutshell

Jini connection technology [2] from Sun
Microsystems, provides simple mechanisms for
resources to join together in a federation with no
human intervention. The resources, both hardware
and software, can provide services to clients on the
network. The Jini connection technology, based on
Java, provides the necessary protocols for services to
register themselves with lookup services and for
clients to then discover these services.

 The whole technology can be segmented into
three categories: infrastructure, programming model
and services. The infrastructure includes lookup
services that serve as a repository of other services
and an extended version of Java based RMI (Remote
Method Invocation), which defines the mechanism of
communication between the members. The
programming model includes interfaces such as
discovery, lookup, leasing, remote events and
transactions which ease the task of building
distributed systems.

Figure 2: Sequence of steps required to use Jini
Technology

(Click on figure to view enlarged image.)

 A service is a central concept within Jini. It is
essentially an entity that can be used by a person,
program or another service to perform a required
task. The runtime infrastructure supports the
discovery and join protocol that enables services to
discover and register with lookup services. Discovery
is the process by which anentity locates lookup

services on the network and obtains references to
them. Join is the process by which a resource
registers the services itoffers with lookup services. In
particular, the resource may post a service object with
the lookup service. Such a service object, contains
the Java programming language interface for the
service including the methods that users and
applications will invoke to execute the service, along
with any other descriptive attributes.

 On the other hand, clients use the same protocol to
locate and contact services. Thus, the discovery
protocol isused to locate lookup services. Once an
appropriate lookup service has been found, the client
can query it to find the reference to the service that it
requires. A service is located by matching its type -
that is, by its interface written in the Java
programming language - along with descriptive
attributes provided in the object. A wild card
mechanism allows some flexibility in this matching
process. A client may then download the posted
service object in order to directly use the service. At
this point, the Jini Lookup service is no longer part of
the picture, the client and the service interact directly
based on the methods provided within the service
object. Figure 2 shows a simplified version of the
sequence of steps that take place for a service to
discover and join a lookup service and for a client to
use the lookup service to locate and interact with the
service that it is seeking.

 Jini supports a leasing mechanism that allows the
federation to be flexible and resilient to failures. A
service only leases an entry in the lookup service for
a negotiated amount of time. When the time expires,
the service has to re-register itself with the lookup
service. Such a protocol allows the network of
services to degrade gracefully. For example, if a
service goes down without notification, its entry will
expire after the leased time leaving no trace of it in
the federation. When the resource returns it can
re-register itself making its service available for
client use.

 The Jini distributed event mechanism allows client
and services to be notified when pre-specified events
occur. Thus, for example a client may request that a
lookup service notify it when a certain type of service
comes online. This allows clients and services to wait
for events without having to periodically pool the

lookup service.

Using Jini in Arcade

We have a built a simple resource monitor and
manager in Arcade using the Jini connection
technology. We have defined our own Java-objects to
represent the resources, workstations, and parallel
machines in particular. When the Arcade
environment comes online, it starts an Arcade
Resource lookup service on a designated workstation.
As the resources in the environment come online a
Resource Controller is started up on the resource.
This controller then discovers and joins the Arcade
Resource lookup service and uploads its service
object. The service object contains some static
information, e.g., the type of machine, the speed of
the cpu, memory size, etc. It also contains dynamic
information, such as the current load. At this point
the object is designed such that the dynamic
information is put into the service object by the
resource itself. We are looking at the possibility of
actually loading the object with code which could be
invoked by the client to generate the information on
the fly.

 Our experience with Jini technology has brought
out some problems in using the technology for
resource monitoring such as the issues of scalability,
security, no support for range queries, etc. Here we
concentrate on one specific problem: using Jini
across networks that do not support multicasting. Jini
uses multicasting across a network for two if its
internal protocols. The Multicast Request Protocol is
used by discovering entities (services/clients) to
locate all the nearby lookup services currently active
in the environment. Once discovered, the discovering
entity and the lookup service communicate with each
other using unicast protocols since they each know
the other’s IP address and port number. The Multicast
Announcement Protocol is used by lookup services to
periodically announce their presence on the network.
This is useful in situations where a new lookup
service comes online or when a lookup service is
restored after a failure.

 Such multicast messages work fine in
environments which support multicast. However,
some routers on the Internet do not support routing of
multicast packets for a variety of reasons. Also, some

organizations are not willing to open their firewalls to
multicast so as to avoid security problems. Similarly,
a local area network divided into subnets, may
disable multicast traffic across the subnets to avoid
unnecessary traffic that may result in performance
degradation. This blocking of multicast traffic across
subnets prohibits the use of Jini in such an
environment.

Figure 3: Tunnel Service required for non-multicastable
networks

(Click on figure to view enlarged image.)

 To solve this problem, we have used the well
known concept of tunneling of messages across the
subnets. As shown in Figure 3, a lightweight
Tunneling Service (TS) is introduced on each subnet.
Each TS listens for multicast announcements and
requests in its subnet. When it receives such a
message, it wraps it up and tunnels to all the other
TSs in the system. On the other hand, when it
receives a tunneled message from one of the other
TSs, it unwraps the message and multicasts it within
its own subnet. This allows messages multicast in one
subnet to be sent across networks. Note that as result
of such a broadcast two entities in different subnets
may wish to communicate with each other. Since
such communication is generally based on direct
unicast messages, the tunneling mechanism is not
involved in it.

 In order for the system to work properly, each of
the TSs needs to know about all the other TSs in the
environment. Thus, we need a central repository that
keeps track of all the currently active TSs. Jini
provides the functionality required for just such a

repository. Hence, we implemented this repository as
a Jini lookup service called the Global Tunneling
Lookup Service (GTLS). As a TS is started, it
registers itself with GTLS uploading a proxy object
which can be used to communicate with it directly.
Using the distributed events interface of Jini, every
TS can get notified when a new TS joins or leaves the
system. Each TS maintains an internal list of
currently active TSs in the environment and uses it to
broadcast tunneled messages. In our implementation,
since each TS relies on the unicast discovery protocol
in all its interactions with the GTLS, it needs to know
the IP address and the port of the GTLS.

 Note that the GTLS can also be implemented as a
stand alone service without using Jini technology. In
such a case, the TSs do not need to know about each
other and just forward the message to be tunneled to
the GTLS. The GTLS maintains the list of active TSs
and whenever it receives a message broadcasts it to
the other TSs. Each TS still has to listen for incoming
tunneled messages which it multicasts in its subnet.
This central directory approach has some advantages
over the Jini-based approach in that the TSs are
lighter weight. However, in this approach, we cannot
take advantage of Jini’s event notification and leasing
mechanism (unless we build it ourselves) and also the
GTLS may become a bottleneck.

Jini Modifications

We had hoped to implement our Jini-based system
without making any modifications to Jini, i.e.,
without making any changes to the behavior of the
clients, services or lookup services. However, in
order to overcome some of the obstacles of tunneling,
we have had to modify the format of the outgoing
request and announcement messages. Note that only
the message formats need to be modified, the
behavior of the rest of Jini remains intact and does
not need to be changed.

 The first problem is the issue of loopback of a
message which a TS receives from outside and then
multicasts in its own subnet. If we do not make any
modification, the TS will receive this message as a
multicast message in its own subnet and try to tunnel
it out to the other TSs. Thus, we had to introduce a
flag in the message header which allows a TS to
distinguish a multicast message originating from the

local subnet from a message received from outside.

 The second problem is that of the host address of
the sender in a tunneled request message. When
responding to a request message from a discovering
entity, a lookup service uses the port number
included in the message. However, it obtains the IP
address of the sender by inquiring about the source of
the multicast message. This works well within a
subnet where the multicast message is originating
from the discovering entity itself. However, in the
case of a tunneled request, the IP address is going to
represent the TS’s host and not the host of the
original discovering entity. To overcome this
problem, we have added the IP address of the host of
the sending entity in the header of the request
message. We do not need to add it in the
announcement message since it already contains the
host’s IP address.

 We have implemented the system, as described
above, using JDK 1.2 and Jini reference
implementation 1.0. We have used it to successfully
tunnel messages between subnets in a single domain
and also between the icase.edu and the cs.odu.edu
domains.

Future Work

We are currently in the process of enhancing the
capability of the resource monitoring and
management subsystem. In particular, we are
investigating the use of an XML-based resource
specification in order to gain the flexibility provided
by XML. More information on the Arcade system
can be found at http://www.icase.edu/arcade.

References

[1] Z. CHEN, K. MALY, P. MEHROTRA, and M.
ZUBAIR. ARCADE: A Web-Java Based Framework
for Distributed Computing, WebNet 99, October
1999.

[2] Jini Connection Technology,
http://www.sun.com/jini.

* Jini and all Jini-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource
Manager in
Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication

Profile

Piyush Mehrotra

Dr. Piyush Mehrotra is a
Research Fellow at the
Institute for Computer
Applications in Science and
Engineering, located at
NASA Langley Research
Center in Hampton, VA.

His research interests include languages, compilers
and runtime support systems for massively parallel
and distributed heterogeneous environments. In
particular, he has been involved with the
development of several parallel languages including
Kali and Vienna Fortran and has actively
participated in the design of High Performance
Fortran, a standard language for data parallel
programming. He is involved in developing a
Web-based framework for supporting distributed
computing over a heterogeneous network of
workstations and parallel machines. He has several
publications in these areas.

 Dr. Mehrotra is currently leading Computer
Science Research including the HPCCP System
Software effort at ICASE, which involves research
in all aspects of support software for parallel
computing. Before coming to ICASE, he taught at
the Department of Computer Science at Purdue
University for four and one-half years. He received
his Ph.D. in Computer Science from the University
of Virginia in 1982.

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

Type Theory and Its
Applications in Computer
Science
César Muñoz
ICASE

Introduction

In elementary school we were taught that a set is a
collection of elements having some characteristics in
common. Later, teachers asked us whether or not an
element belongs to a given set. So, for example, they
stated that the collection of stars in the universe is a
set, and then they asked us if the element moon
belongs to that set or not. The very simple theory of
sets behind these two concepts:

1. every predicate is a set, and
2. it is always possible to ask if an element

satisfies a predicate,

is known in our days as the naîve set theory. In 1902,
Russell has shown that the naîve set theory is
inconsistent, i.e., it leads to paradoxes [23]. A
well-known paradox due to Russell is the following.
Let A be the set of all the sets that are not elements
of themselves. Is A an element of itself? Both
positive and negative answers to this question raise a
contradiction.

 To solve Russell’s paradox, two theories were
proposed: the Set Theory of Zermelo-Fraenkel [6]
(a.k.a. set theory) and the Type Theory of
Whitehead-Russell [23] (later simplified by Ramsey
and Church [19, 4]) (a.k.a. type theory).

 In set theory the postulate that every predicate is
a set has been replaced by very precise rules of
construction of sets. For instance, the comprehension
rule to define a set by a predicate is only allowed
over previously constructed sets. In set theory, the
"set" of all the sets that are not elements of
themselves is simply not a set since it does not
respect the comprehension rule.

Navigation Help

Past Issues

 On the other hand, in type theory the postulate
that allows us to ask if an element belong to a set has
been constrained. In this approach, mathematical
objects are stratified in several categories, namely
types. For instance, a set has a different type from its
elements. Since all the elements of a set must have
the same type, the question "Is A an element of
itself?" is not a valid question. From the type theory
point of view, teachers are not always allowed to ask
about arbitrary elements on arbitrary sets.

 Set theory (together with classical logic) is the
standard foundation of modern mathematics.
However, type theory, and all its variants, is widely
popular in the computer science community. In the
rest of this article we give a general overview of type
theory and its role in computer science, i.e., the
foundation of programming and specification
languages.

Type Theory and Its Applications

A minimal type system, known as the Simple Type
Theory, was proposed by Church in [4]. In that
theory, mathematical objects are of two kinds: terms
and types. The terms of the Simple Type Theory are
the terms of the lambda-calculus, itself being a
formalization of partial recursive functions proposed
by Church [5]. Types can be basic types or
functional types A --> B where A and B are types.

 In lambda-calculus, terms can be variables,
functions, or applications. Only terms that follow a
type discipline are considered to be valid. The type
discipline is enforced by a set of typing rules. A
typing rule says, for example, that a function f can
be applied to a term x if and only if f has the type A
--> B and x has the type A. In that case, the
application f(x) has the type B. Thanks to the typing
rules, Russell’s paradox cannot be expressed in the
simple type theory.

 Type checking is decidable in the simply typed
lambda-calculus. That is, it is decidable whether or
not a term has a type, in a given context, according
to the typing rules.

 The Simple Type Theory can be extended
straightforward with types for Cartesian products,
records, and disjoint unions [3]. For this reason,
simple types have been largely exploited by

designers of programming languages. Indeed, most
of the modern programming languages support, to
some extent, a simply-typed system. In these
languages, type checking, implemented by the
compiler, is a powerful tool to reject undesirable
programs. In other words, programs violating the
type discipline are considered harmful, and
therefore, they should be rejected by the compiler.
For instance, in Pascal [10], boolean functions
cannot be applied to integers. This restriction
happens to be a simply typed rule enforced by the
compiler. On the other hand, C [11] supports a more
liberal typing discipline; the compiler warns of some
violations, but it seldom rejects a program. Almost
every C-programmer knows the danger of this
flexibility in the language.

 When writing formal specifications, the choice of
a typed language, in opposition to a language based
on set theory, is not always evident [12]. In contrast
to programs, specifications are not supposed to be
executable. Thus, a too restrictive type theory, as for
example the simply typed lambda-calculus, quickly
becomes cumbersome to write enough abstract
specifications. Several variants of type theories have
been proposed in the literature, most of them are still
convenient to write formal specifications and
powerful enough to reject specifications that are
undesirable [21]. Let us review some extensions to
the Simple Type Theory.

Polymorphism and Data Types

A major improvement to the Simple Type Theory, is
the System F proposed by Girard in [7]. System F
extends lambda-calculus with quantification over
types; that is, it introduces the notion of type
parameters which is at the basis of the concept of
polymorphism. In this system, generic data types as
list, trees, etc. can be encoded. Type checking is still
decidable in a type system that supports
polymorphism and abstract data type declarations.

 In programming languages, polymorphism allows
the reuse of code which works over structures
parameterized by a type. For instance, a sort function
is essentially the same whether it works over a list of
integers or a list of strings. Polymorphic-typed
languages exploit this uniformity without losing the
ability to catch errors by enforcing a type discipline.

 Although most of the specification languages
based on higher-order logic support polymorphism
[17, 13, 18, 2], just a few modern programming
languages implement it correctly.

 The functional programming languages of the
ML family [16] are strongly typed languages that
support algebraic data types and polymorphism.
They use the Milner’s type inference algorithm [15].
That is, although the language is strongly typed, the
types of all the expressions occurring in the program
are inferred by the compiler. Hence, ML programs
are almost free of type declarations.

 Object-oriented imperative languages as Eiffel
[14], C++ [22], and Java [1] support polymorphic
types to some extent. However, object-oriented
features, side effects, and polymorphism result in
very complex type systems. Eiffel uses a rather
complicated and ad-hoc type system, C++ follows
the same liberal discipline of C with respect to type
checking, and polymorphism in Java is restricted to
single inheritance.

Dependent Types and Constructive Type
Theories. Dependent types is the ability to define
types which depend on terms. For instance, in Pascal
the type declaration array[1..10] of integers is
a dependent-type declaration since it depends on
expressions 1 and 10. A general theory of dependent
types, called LP, was proposed by Harper et al. in
[9].

 Dependent types have been extended with
polymorphism and inductive data types in a very
expressive extension to the lambda-calculus called
the Calculus of Inductive Constructions (CIC). This
calculus is the logical framework of the proof
assistant system Coq [2]. Type checking is decidable
in CIC and the calculus satisfies the strong
normalization property, i.e., functions defined using
the CIC formalism always terminate. The Calculus
of Inductive Constructions supports the
propositions-as-types principle of the higher-order
intuitionistic logic. According to this principle, a
proof of a logical proposition A is the same as a term
of type A. This isomorphism between proofs and
terms is also known as the Curry-Howard
isomorphism [8]. In practice, the Curry-Howard
isomorphism is used to extract a program from the

constructive proof of the correctness of an algorithm.
Programs extracted in this way satisfy the
termination property.

 Although very simple dependent types are used in
most programming languages, general dependent
types and constructive types are still hard to handle
in programming languages.

Subtyping and Other Mysteries. In type theory
every object has at most one type. A drawback of
this postulate is that an object as the natural number
1 has to be different from the real number 1. A way
to handle this problem is to introduce predicate
subtyping [21], i.e., the ability to define new types
by a predicate on previously defined types. For
instance, the type nat can be defined as a subtype of
real such that it contains only the numbers generated
from 0 and +1. Via predicate subtyping the natural
number 1 is also a real number.

 The type theory of the general verification system
PVS [20] supports predicate subtyping.
Unfortunately, general predicate subtyping rends
type checking undecidable. In PVS, the type-checker
returns a set of type correctness conditions (TCCs)
that should be discharged by the user; these TCCs
guarantee the type correction of the formal
development. In practice, TCCs are not a problem
since PVS provides a powerful theorem prover
which implements several kinds of decision
procedures and automation tools.

 Due to the undecidability problem, general
predicate subtyping is not used in programming
languages. However, object-oriented programming
languages opened the door to another interesting
kind of subtyping: inheritance. Via inheritance, two
structurally different types may share some
elements. Related concepts to inheritance are those
of overloading, that is, the ability to use the same
name for different functions, and dynamic typing,
that is, the ability for objects to change their types
during the execution of a program. The formal
semantics of all these concepts in a typed framework
is still subject of research and controversy.

Summary

Type theory offers a convenient formalism to write
specifications and the ability to reject undesirable

specifications long before they were refined into
actual implementations. In programming languages,
type checking allows us to catch potential run-time
errors at the compilation phase. Type systems used
in specification languages and in programming
languages differ in complexity and in
expressiveness. Current research in the area includes
bringing the benefits of very expressive type systems
to programming languages used by practitioners. In
order to do that, it is necessary to adapt and simplify
the highly mathematical notations of the complex
type systems into easily handled programming
language features.

 The Formal Methods Group for Aviation Safety
at ICASE conducts basic research on the application
of type theory techniques to improve the safety of
digital systems.

References

[1] K. ARNOLD and J. GOSLING. The Java
Programming Language, The Java Series,
Adison-Wesley, Reading, MA, 2nd edition, 1998.

[2] B. BARRAS ET AL. The Coq Proof Assistant
Reference Manual - Version V6.1, Technical Report
0203, INRIA, August 1997.

[3] L. CARDELLI. In Handbook of Computer Science
and Engineering, Chapter 103, pp. 2208-2236. CRC
Press, 1997. http://www.research.digital.com/SRC.

[4] A. CHURCH. A formulation of the simple theory
of types, Journal of Symbolic Logic, Vol. 5, 1940,
pp. 56-68.

[5] A. CHURCH. The Calculi of Lambda-Conversion,
Princeton University Press, 1941.

[6] A.A. FRAENKEL, Y. BAR-HILL, and A. LEVY.
Studies in Logic and the Foundations of
Mathematics, Vol. 67, North-Holland, Amsterdam,
The Netherlands, second printing, second edition,
1984.

[7] J.-Y. GIRARD. Une extension de l’interprétation
de Gödel á l’élimination des coupures dans l’analyse
et la théorie des types, in Proceedings of the Second
Scandinavian Logic Symposium, J.E. Fenstad, ed.,
Oslo, Norway, 1970; Studies in Logic and the
Foundations of Mathematics, Vol. 63,
North-Holland, Amsterdam, pp. 63-92, 1971.

[8] J.-Y. GIRARD, P. TAYLOR, and Y. LAFONT. Proof
and Types, Cambridge University Press, 1989.

[9] R. HARPER, F. HONSELL, and G. PLOTKIN. A
framework for defining logics, Journal of the
Association for Computing Machinery, Vol. 40, No.
1, 1993, pp. 143-184.

[10] K. JENSEN and N. WIRTH. The Programming
Language Pascal, Springer-Verlag, 1975.

[11] B.W. KERNIGHAN and D.M. RITCHIE. The C
Programming Language, Second Edition,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[12] L. LAMPORT and L.C. PAULSON. Should your
specification language be typed? SRC Research
Report 147, Digital Systems Research Center, Palo
Alto, CA, 1997.
http://www.research.digital.com/SRC.

[13] M.J.C. GORDON and T.F. MELHAM.
Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic, Cambridge
University Press, 1993.

[14] B. MEYER. Eiffel: The Language.
Object-oriented Series. Prentice Hall, New York,
NY, 1992.

[15] R. MILNER. A theory of type polymorphism in
programming, J. Comp. Syst. Scs., Vol. 17, 1977, pp.
348-375.

[16] R. MILNER, M. TOFTE, and R. HARPER. The
Definition of Standard ML, MIT Press, Cambridge,
MA, 1991.

[17] S. OWRE, J.M. RUSHBY, and N. SHANKAR. PVS:
A prototype verification system, in the Eleventh
International Conference on Automated Deduction
(CADE), D. Kapur, ed., Vol. 607 of Lecture Notes
in Artificial Intelligence, Saratoga, NY,
Springer-Verlag, pp. 748-752, 1992.

[18] L.C. PAULSON. Isabelle: A Generic Theorem
Prover, Vol. 828 of Lecture Notes in Computer
Science, Springer-Verlag, 1994.

[19] F.P. RAMSEY. The foundations of mathematics,
in Philosophical Papers of F.P. Ramsey, D.H.
Mellor, ed., Chapter 8, Cambridge University Press,
Cambridge, UK, pp. 164-224, 1990. Originally
published in Proceedings of the London

Mathematical Society, Vol. 25, pp. 338-384, 1925.

[20] K.H. ROSE. Explicit cycle substitutions, in
Proceedings CTRS ’92 - Third International
Workshop on Conditional Term Rewriting Systems,
M. Rusinowitch and J.-L. Rémy, eds., No. 656 in
Lecture Notes in Computer Science,
Pont-a-Mousson, France, Springer-Verlag, pp.
36-50, 1992.

[21] J. RUSHBY, S. OWRE, and N. SHANKAR.
Subtypes for specifications: Predicate subtyping in
PVS, IEEE Transactions on Software Engineering,
Vol. 24, No. 9, 1998, pp. 709-720.

[22] B. STROUSTRUP. The C++ Programming
Language: Third Edition, Addison-Wesley
Publishing Co., Reading, MA, 1997.

[23] A.N. WHITEHEAD and B. RUSSELL. Principia
Mathematica, Cambridge University Press,
Cambridge, UK, revised edition, 1925-1927. Three
volumes. The first edition was published 1910-1913.

 © 1999 ICASE, all rights reserved.

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

Profile

César Muñoz

César Muñoz received his
Ph.D. in Computer Science
from the University of Paris
7 in November 1997.
During his graduate studies
he worked as a Research
Assistant in the Coq Project

at INRIA Rocquencourt. After completing his Ph.D.,
he spent one and a half years as an International
Fellow in the Computer Science Laboratory at SRI
International in Menlo Park. He joined ICASE as a
Staff Scientist in May 1999. His research work
focuses on the application of type theory and higher
order logic to formal specification, verification, and
proof checking.

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures
at ICASE
November 19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

Nobel Laureate Smalley
Lectures at ICASE November
19th

Professor Smalley presents seminar on "Buckytubes."

On November 19, 1999, Professor Richard E.
Smalley from the Center for Nanoscale Science and
Technology, Rice University, presented an ICASE
Colloquium on "Buckytubes - New Materials and
New Devices from Carbon." Professor Smalley is
the Gene and Normal Hackerman Professor of
Chemistry and Physics at Rice University. He is also
the recipient of the 1996 Nobel Prize in Chemistry
for his discovery of new forms of the element carbon
- called fullerenes. More information on Professor
Smalley and his current research can be found at
http://cnst.rice.edu/reshome.html.

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

ICASE Colloquia
October 1, 1999 - December 31, 1999

"Launch Vehicle Design Process: Characterization,
Technical Integration, and Lessons Learned"
Luke Schutzenhofer, University of Alabama,
Huntsville, October 8, 1999

"Biomimetics Seminar: Swimming by Design: Fish,
Whales, and Submarines"
Steven Wainwright, Duke University, November 2,
1999

"Mona Tutorial: Automaton-based Symbolic
Computation"
Nils Klarlund, AT&T Labs Research, November 4,
1999

"Smart Objects and Dumb Archives: Using Buckets
in Digital Libraries"
Michael L. Nelson, NASA Langley Research
Center, November 9, 1999

"Buckytubes - New Materials and New Devices
from Carbon"
Richard E. Smalley, Rice University, November 19,
1999

"Reduced Order Models in Unsteady Aerodynamics"
Earl Dowell, Duke University, December 7, 1999

"Fully Nonlinear Models for Internal Wave
Propagation in Two-fluid Systems"
Roberto Camassa, University of North Carolina at
Chapel Hill, December 10, 1999

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

ICASE Reports
October 1, 1999 - December 31, 1999

 99-39 Rubinstein, Robert, and Ye Zhou:
Characterization of sound radiation by
unresolved scales of motion in
computational aeroacoustics. ICASE
Report No. 99-39,
(NASA/CR-1999-209688), October 13,
1999, 13 pages.

 99-40 Povitsky, Alex: Wavefront
cache-friendly algorithm for compact
numerical schemes. ICASE Report No.
99-40, (NASA/CR-1999-209708),
October 15, 1999, 12 pages

 99-41 Ma, Kwan-Liu, and Thomas W.
Crockett: Parallel visualization of
large-scale aerodynamics calculations:
A case study on the Cray T3E. ICASE
Report No. 99-41,
(NASA/CR-1999-209709), October 18,
1999, 17 pages.

 99-42 Lüttgen, Gerald, Michael von der
Beeck, and Rance Cleaveland:
Statecharts via process algebra. ICASE
Report No. 99-42,
(NASA/CR-1999-209713), October 26,
1999, 23 pages.

 99-43 Muñoz, César: Dependent types
and explicit substitutions. ICASE
Report No. 99-43,
(NASA/CR-1999-209722), November 5,
1999, 31 pages.

 99-44 Mavriplis, Dimitri J.: Large-scale
parallel viscous flow computations
using an unstructured multigrid
algorithm. ICASE Report No. 99-44,
(NASA/CR-1999-209724), November 10,
1999, 19 pages.

 99-45 Woodruff, S.L., J.V. Shebalin, and
M.Y. Hussaini: Direct-numerical and

Navigation Help

ICASE
Technical
Reports Web
Page

Past Issues

large-eddy simulations of a
non-equilibrium turbulent Kolmogorov
flow. ICASE Report No. 99-45,
(NASA/CR-1999-209727), December 30,
1999, 21 pages.

 99-46 Yamaleev, Nail K.: Minimization
of the truncation error by grid
adaptation. ICASE Report No. 99-46,
(NASA/CR-1999-209729), December 2,
1999, 40 pages.

 99-47 Muñoz, César: Proof-term
synthesis on dependent-type systems
via explicit substitutions. ICASE Report
No. 99-47, (NASA/CR-1999-209730),
November 30, 1999, 33 pages.

 99-48 Povitsky, Alex: On aeroacoustics
of a stagnation flow near a rigid wall.
ICASE Report No. 99-48,
(NASA/CR-1999-209825), December 6,
1999, 23 pages.

 99-49 Alexandrov, Natalia M., Robert
Michael Lewis, Clyde R. Gumbert, Larry
L. Green, and Perry A. Newman:
Optimization with variable-fidelity
models applied to wing design. ICASE
Report No. 99-49,
(NASA/CR-1999-209826), December 6,
1999, 23 pages.

 99-50 Ciardo, Gianfranco, Gerald
Lüttgen, and Radu Siminiceanu: Efficient
symbolic state-space construction for
asynchronous systems. ICASE Report
No. 99-50, (NASA/CR-1999-209827),
December 13, 1999, 43 pages.

 99-51 Thomas, James L., Boris Diskin,
and Achi Brandt: Textbook multigrid
efficiency for the incompressible
Navier-Stokes equations: High
Reynolds number wakes and boundary
layers. ICASE Report No. 99-51,
(NASA/CR-1999-209831), December 22,
1999, 27 pages.

 99-52 Smith, Ralph C., and Zoubeida
Ounaies: A domain wall model for
hysteresis in piezoelectric materials.

ICASE Report No. 99-52,
(NASA/CR-1999-209832), December 22,
1999, 21 pages.

 99-53 Park, C., Z. Ounaies, J. Su, J.G.
Smith, Jr., and J.S. Harrison:
Polarization stability of amorphous
piezoelectric polyimides. ICASE Report
No. 99-53, (NASA/CR-1999-209833),
December 22, 1999, 11 pages.

 99-54 Nordström, Jan, and Mark H.
Carpenter: High order finite difference
methods, multidimensional linear
problems and curvilinear coordinates.
ICASE Report No. 99-54,
(NASA/CR-1999-209834), December 30,
1999, 35 pages.

 © 1999 ICASE, all rights reserved.

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

Employment Opportunities at
ICASE

Staff Scientist Position in Applied &
Numerical Math

Staff Scientist Positions in Biomimetics

Staff Scientist Positions in Computer Science

Staff Scientist Position in Fluid Mechanics

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

Publication Information

 The ICASE Research Quarterly is published by
the Institute for Computer Applications in Science
and Engineering. The Institute is an affirmative
action/equal opportunity employer operated by the
Universities Space Research Association and is
located at NASA Langley Research Center.

 Editor
 Shannon K. Verstynen

 Editorial Assistant
 Emily N. Todd

Subscription Information
 You can receive e-mail notification of future

editions of the ICASE Research Quarterly by
going to the ICASE Mailing Lists Web Page and
selecting the entry for the Quarterly.

Further Information
 Further information about ICASE or the contents

of the Research Quarterly can be obtained by
contacting:

 Emily Todd
 ICASE
 Mail Stop 132C
 NASA Langley Research Center
 Hampton, VA 23681-2199
 Fax: (757) 864-6134
 info@icase.edu

Vol. 8, No. 4
December
1999

Inside this
Issue

Contents

ICASErs Share
1999 Bell Prize for
High Performance
Computer
Simulation

ICASE Welcomes
New Staff and
Visiting Scientists

Using Jini
Technology for
Distributed
Resource Manager
in Arcade

Type Theory and
Its Applications in
Computer Science

Nobel Laureate
Smalley Lectures at
ICASE November
19th

ICASE Colloquia

ICASE Reports

Employment
Opportunities at
ICASE

Publication
Information

Navigation Help

 The ICASE logo, which appears on
the upper left corner of the page, is a
link to ICASE’s Home Page.

 The left and right arrows are links to
the previous and next page,
respectively. They are displayed on
the right, upper and lower, corners
of the page.

 The up arrow is a quick way of
returning to the top of the page. It is
displayed at the bottom, left corner,
of the page.

 This is an image map for
downloading different text formats.
It appears in the Research Quarterly
Reports page. The left-upper portion
of the icon is a link to postscript
format; the right-upper portion is a
link to Adobe PDF format; the
bottom-half of the icon is a link to
the NCSTRL report depository. It
provides an abstract of the paper and
the ability to perform a field search.

